Robust monocular visual odometry for road vehicles using uncertain perspective projection
نویسندگان
چکیده
Many emerging applications in the field of assisted and autonomous driving rely on accurate position information. Satellite-based positioning is not always sufficiently reliable and accurate for these tasks. Visual odometry can provide a solution to some of these shortcomings. Current systems mainly focus on the use of stereo cameras, which are impractical for large-scale application in consumer vehicles due to their reliance on accurate calibration. Existing monocular solutions on the other hand have significantly lower accuracy. In this paper, we present a novel monocular visual odometry method based on the robust tracking of features in the ground plane. The key concepts behind the method are the modeling of the uncertainty associated with the inverse perspective projection of image features and a parameter space voting scheme to find a consensus on the vehicle state among tracked features. Our approach differs from traditional visual odometry methods by applying 2D scene and motion constraints at the lowest level instead of solving for the 3D pose change. Evaluation both on the public KITTI benchmark and our own dataset show that this is a viable approach for visual odometry which outperforms basic 3D pose estimation due to the exploitation of the largely planar structure of road environments.
منابع مشابه
Monocular Visual-IMU Odometry: A Comparative Evaluation of the Detector-Descriptor Based Methods
Visual odometry has been used in many fields, especially in robotics and intelligent vehicles. Since local descriptors are robust to background clutter, occlusion and other content variations, they have been receiving more and more attention in the application of the detector-descriptor based visual odometry. To our knowledge, however, there is no extensive, comparative evaluation investigating...
متن کاملEnhanced Monocular Visual Odometry Integrated with Laser Distance Meter for Astronaut Navigation
Visual odometry provides astronauts with accurate knowledge of their position and orientation. Wearable astronaut navigation systems should be simple and compact. Therefore, monocular vision methods are preferred over stereo vision systems, commonly used in mobile robots. However, the projective nature of monocular visual odometry causes a scale ambiguity problem. In this paper, we focus on the...
متن کاملDriven to Distraction: Self-Supervised Distractor Learning for Robust Monocular Visual Odometry in Urban Environments
We present a self-supervised approach to ignoring “distractors” in camera images for the purposes of robustly estimating vehicle motion in cluttered urban environments. We leverage offline multi-session mapping approaches to automatically generate a per-pixel ephemerality mask and depth map for each input image, which we use to train a deep convolutional network. At run-time we use the predicte...
متن کاملCombined visual odometry and visual compass for off-road mobile robots localization
In this paper, we present the work related to the application of a visual odometry approach to estimate the location of mobile robots operating in off-road conditions. The visual odometry approach is based on template matching, which deals with estimating the robot displacement through a matching process between two consecutive images. Standard visual odometry has been improved using visual com...
متن کاملRobust Monocular Visual Odometry for a Ground Vehicle in Undulating Terrain
Here we present a robust method for monocular visual odometry capable of accurate position estimation even when operating in undulating terrain. Our algorithm uses a steering model to separately recover rotation and translation. Robot 3DOF orientation is recovered by minimizing image projection error, while, robot translation is recovered by solving an NP-hard optimization problem through an ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Image and Video Processing
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015